

Hitchhiker Space Station: Background

- Code M funded study to ascertain potential for using existing or modified Hitchhiker STS carrier equipment to support science and applications payloads on Space Station
 - Determine existing plans for external ISS payload accommodations, requirements and user interfaces
 - Develop ISS/HH design concepts
 - Develop cost and schedule information per related concepts/modifications
- Preliminary study completed late 1998

Study Guidelines and Goals

- Low cost approach
- Make maximum use of existing Hitchhiker resources
- Avoid duplicating existing ISS carrier services
- Provide for easy transition of existing and new Hitchhiker STS payloads to ISS
 - provide backward compatibility of user electrical interfaces
 - provide backward compatibility for user mechanical interfaces
 - provide backward compatibility of ground systems interfaces
- Maximize manifesting potential through appropriate design choices
- □ Provide solution that supports NASA science community (S,Y,etc) ISS endeavors

ISS Attached Payload Sites

JEM-EF ELM-ES

Summary/Status of Preliminary Study

- Direct mount truss (S3), Japanese Experiment Module Exposed Facility (JEM-EF), Columbus Orbiting Facility (COF), and Express Pallet Adapter sites all have different mechanical and electrical interfaces
- □ Express Pallet Carrier servicing truss S3 sites via Express Pallet
 Adapter; Express Pallet Adapter used for COF sites
- □ JEM EF (10 sites:5 for NASDA, 5 for NASA: 8 500 kg & 2 2500kg slots) not presently being serviced by carrier organization and under subscribed therefore a need for a "Hitchhiker like" ISS Carrier. NASDA does payload integration on JEM-EF
- □ JEM-EF launch scheduled for June '03
- □ Extensive interest & support within Hitchhiker STS community, including GSFC investigators, for Hitchhiker JEM carrier systems and services
- ☐ Hitchhiker STS cross bay structure may be used as 2500 Kg JEM EF payload logistics carrier (JSC has no solution for this situation)

Need for SSPPO Type Function on JEM-EF

- □ The Need for an SSPPO Type Payload Function/Service for NASA ISS JEM EF payloads is even greater than for small Shuttle Payloads for the following reasons:
 - Immature system and interface status
 - Greatly increased complexity of ISS interfaces
 - Increased flight time
 - Greatly increased complexity of ISS installation, robotics, and on-orbit operations
 - Absence of ground test against flight article
 - International Interfaces
 - Culture and language issues
 - Geographic distance issues

HH JEM Imaging Surface Lidar Experiment Dr. Bufton NASA GSFC Code 920

☐ LAND-USE & LAND-COVER

- Responses of terrestrial ecosystems after disturbance
- Assess changes in above-ground carbon stocks
- Regional forest inventory

DIGITAL TOPOGRAPHY

- Three-dimensional terrain imaging
- Global grid of digital elevation tie points
- High-resolution narrow-swath coverage of dynamic topography
- Comparative geomorphology

LASER TECHNOLOGY PATHFINDER

- Sensor fusion of laser probing with multi-spectral imagery
- In-space qualification of nextgeneration laser pulse transmitters
- Demonstrate aggregate measurement rates and precision for change detection

HH JEM Arizona Air-Glow Facility (GLO) Dr.Broadfoot Lunar Planetary Laboratory & Canadian Space Agency

- □ Wide bandwidth (115-900 nm) hyper-spectral imaging spectrograph, complementary monochromatic imagers, and EUV solar flux monitor
- Measure the spatial and temporal variations of constituent number densities and temperatures in the thermosphere (60-300 km)
- □ The GLO measurement set will be used in the larger goal of predicting Earth's atmospheric response to solar activity

JEM - EF & HH JEM Payloads

HH STS and ISS Experiments

ISS/HH JEM Programmatic Vision

- ☐ The Hitchhiker Program (OSF) would develop a HH JEM-EF carrier which will accommodate up to four instruments on one JEM-EF port with simple, Hitchhiker type, mechanical, electrical, and thermal interfaces
- □ The Hitchhiker Program will help investigators with documentation, safety, and interfaces, and provide instrument to carrier integration in a manner similar to the continuing Shuttle Hitchhiker Program and sharing existing GSFC Hitchhiker facilities and personnel
- OSF to fund HH JEM carrier system development, ground systems, and recurring standard integration and support, but end user organizations will need to fund excess (non-standard) integration and operations costs and recurring carrier hardware costs to be advertised in future Code S/Y AO venues
- At any moment in time, one HH JEM payload would be on orbit while a second replacement HH JEM payload would be in integration phase at GSFC. On orbit swap via HH STS MPESS mission
- Manifesting and Utilization issues are handled by existing NASA HQ and JSC infrastructures
- □ Incorporate Outreach component as is tradition for SSPPO

ISS/HH-JEM Advantages

- Provides capability for accommodating multiple instruments on a single JEM-EF mounting position
- □ Payload interfaces are to the US ISS/HH-JEM (simple integration) and not directly to the Japanese JEM EFU (difficult integration)
- Avoids recurring experimenter effort and "wheel reinvention" costs associated with difficult mechanical, thermal, electrical, robotic, logistics, operations, interface testing and safety interfaces conducted across an international boundary
- Allows for capture and growth of an experienced ISS Attached Payload team resulting in more efficient use of resources and lower cost missions for experimenters

ISS/HH-JEM Advantages

- Allows Investigators to focus their monies on instrument development and not the mission integration effort, thus making their proposals more competitive within the AO venues
- □ Slips in ISS schedule would have less of an impact on investigator costs. Investigator could easily opt to fly on STS Hitchhiker
- Synergism with ongoing Hitchhiker STS program:
 - reduces cost to start up & implement a HH JEM based carrier service
 - allows for easy mixing of STS Hitchhiker and ISS/HH JEM payloads in cargo bay
 - provides fall back flight opportunities in the event of ISS assembly delays

Shuttle Hitchhiker Experiment

- Shuttle Hitchhiker Experiment Launcher System (SHELS)
 - Co-sponsored development by NASA/GSFC and DoD (USAF SMSC/OL-AW)
 - Flight Ready by January 2000
 - Side-mounting shelf designed to eject up to a 400 lb. (maximum) satellite from the Shuttle Payload Bay
 - Center of gravity 24 inches above the separation plane; +/- 0.25 inches off
 - ejection axis centerline
 - Payload envelope:
 - 42.0" (orbiter +/-x)
 - 26.0" (orbiter +/-y)
 - 45.0" (orbiter +/-z)
 - Power and data umbilical available (optional cost)
 - 280 Watts radiated heater power if no umbilical

Future Enhancements

Shuttle Hitchhiker Ejection System (SHELS) Payload Envelope

SIDEWALL ENVELOPE LOOKING AT ORBITER SILL

SIDEWALL ENVELOPE LOOKING DOWN THE ORBITER BAY

Hitchhiker Mechanical Accommodations

- The Hitchhiker carriers consist of modular equipment designed for either sidemounting or cross-bay mounting in the shuttle payload bay
- ☐ Hitchhiker mechanical mounting provisions:
 - 5 Cubic Ft. Canisters Max 200 lb. (90 kg) Payload Weight
 - 19" diameter x 28" height
 - Motorized Door Option
 - Side Mount Plate Max 305 lb. (138 kg) Payload Weight
 - Top Plate Max 600 lb. (272 kg) Payload Weight

Hitchhiker Electrical Accommodations

- The current Hitchhiker Avionics System
 - Eight standard electrical interface "ports" for customer payloads
 - Each port provides the following:
 - 28V Power, Two 10A Circuits, up to 500W
 - Ground Command Interfaces
 - Time Signal
 - Low-rate Data Channel, up to 1200 Baud Downlink
 - Medium Rate Data Channel up to 1.4 MB Downlink
- Additional electrical services are optional including CCTV interface for on-board recording and downlink, or for crew display and control interface
- Payloads are operated from a Payload Operations Control Center (POCC) located at GSFC